Luyện tập: Giải bài 53 54 55 56 57 trang 30 sgk Toán 9 tập 1

Cùng xem Luyện tập: Giải bài 53 54 55 56 57 trang 30 sgk Toán 9 tập 1 trên youtube.

Bài tập §7. Các phép biến đổi đơn giản của biểu thức liên quan đến căn bậc hai (tiếp theo), Chương 1 – Căn bậc hai. Căn bậc hai, SGK Toán 9 Tập 1. Nội dung giải bài 53 54 55 56 57 Trang 30 SGK Toán 9 Tập 1 SGK toán tổng hợp phần công thức, lý thuyết và phương pháp giải giúp học sinh học tốt môn Toán lớp 9.

Lý thuyết

1. Lấy mẫu biểu thức bình phương

Việc lấy mẫu biểu thức căn bậc hai có thể được sử dụng khi chuyển đổi biểu thức chứa căn bậc hai.

Nói chung: đối với biểu thức a, b trong đó \(a.b\geq 0 \ và \ b\neq 0, \ ta \ có \ \sqrt{\frac {a } {b }}=\frac{\sqrt{ab}}{|b|}\)

2. Trục gốc trong bảng

Nói chung:

Với biểu thức a, b trong đó \(b>0\), ta có: \(\frac{a}{\sqrt{b}}=\frac{a\sqrt { b }}{b}\)

Với các biểu thức a, b, c, trong đó \(a\geq 0 \ và \ a\neq b^2\), ta có \(\frac{c}{ sqrt {a}\pm b}=\frac{c(\sqrt{a}\pm b)}{a-b^2}\)

Với biểu thức a, b, c trong đó \(a\geq 0, b\geq 0 \ và \ a\neq b\), ta có \(\frac{ c } {\sqrt{a}\pm \sqrt{b}}=\frac{c(\sqrt{a}\pm \sqrt{b})}{a-b}\)

Dưới đây là lời giải câu hỏi 1 SGK Toán 9 trang 53, 54, 55, 56, 57 và trang 30. Các em đọc kỹ câu hỏi trước khi giải nhé!

Bài tập

giaibaisgk.com giới thiệu đến các em lời giải bài tập Đại số 9 đầy đủ và kèm theo lời giải chi tiết Bài 7 SGK Toán 9 trang 53 54 55 56 57 và trang 30. Các phép Biến đổi Đơn giản của Biểu thức Căn bậc hai từ Chương I (tiếp theo) – Căn bậc hai. Cube gốc để bạn tham khảo. Chi tiết lời giải của từng bài tập xem bên dưới:

1. Giải bài 53 tr.30 SGK Toán 9 1

Xem Thêm : Chữ Ký Tên Hào, Hảo Đẹp ❤️️ Mẫu Chữ Kí Hào Phong Thủy

Rút gọn các biểu thức sau (giả sử tất cả các biểu thức bằng chữ đều có nghĩa):

a) $\sqrt{18(\sqrt{2} – \sqrt{3})^2}$ ;

b) ab.$\sqrt{1 + \frac{1}{a^2b^2}}$;

c) $\sqrt{\frac{a}{b^3} + \frac{a}{b^4}}$ ;

d) $\frac{a + \sqrt{ab}}{\sqrt{a} + \sqrt{b}}$

Giải pháp:

a)Chúng tôi có:

\(\sqrt{18(\sqrt{2}-\sqrt{3})^{2}}=\sqrt {18}.\sqrt{(\sqrt 2 – sqrt 3)^2}\)

\(=\sqrt{9.2}.|\sqrt{2}-\sqrt{3}|=\sqrt{3^2.2}.|\sqrt{2}-\sqrt {3}|\)

\(=3\sqrt{2}.|\sqrt{2}-\sqrt{3}|=3\sqrt{2}(\sqrt{3}-\sqrt{ 2})\)

\(=3\sqrt {2.3}- 3(\sqrt 2)^2\)

\(=3\sqrt 6 -3.2=3\sqrt{6}-6\).

Bởi vì \( 2 < 3 \leftrightarrow \sqrt 2 < \sqrt 3 \leftrightarrow \sqrt 2 -\sqrt 3 <0\)

Do đó: \( |\sqrt 2 -\sqrt 3|=-(\sqrt 2 -\sqrt 3)=-\sqrt 2 +\sqrt 3\) \( = \sqrt 3-\sqrt2\).

b)Ta có:

$ab\sqrt{1+\frac{1}{a^{2}b^{2}}}=ab\sqrt{\dfrac{a^2b^2}{a^2b ^2}+\dfrac{1}{a^2b^2}}$

$=ab\sqrt{\dfrac{a^2b^2+1}{a^2b^2}}=ab\dfrac{\sqrt{a^2b^2+1}}{ \sqrt{a^2b^2}}$

$=ab\dfrac{\sqrt{a^2b^2+1}}{\sqrt{(ab)^2}}=ab\dfrac{\sqrt{a^2b^2 +1}}{|ab|}$

Nếu \(ab \ge 0\) thì \(|ab|=ab\)

\( \rightarrow ab\dfrac{\sqrt{a^2b^2+1}}{|ab|}=ab\dfrac{\sqrt{a^2b^2+1} {ab}=\sqrt{a^2b^2+1}\).

Nếu \(ab < 0\) thì \(|ab|=-ab \)

\(\rightarrow ab\dfrac{\sqrt{a^2b^2+1}}{|ab|}=ab\dfrac{\sqrt{a^2b^2+1} }{-ab}=-\sqrt{a^2b^2+1}\).

c)Ta có:

$\sqrt{\dfrac{a}{b^{3}}+\dfrac{a}{b^{4}}}=\sqrt{\dfrac{a.b}{b^ {3}.b}+\dfrac{a}{b^{4}}}$

$=\sqrt{\dfrac{ab}{b^4}+\dfrac{a}{b^4}}=\sqrt{\dfrac{ab+a}{b^4 }}$

$=\dfrac{\sqrt{ab+a}}{\sqrt{(b^2)^2}}=\dfrac{\sqrt{ab+a}}{|b^ 2|}=\dfrac{\sqrt{ab+a}}{b^2}$.

Vì \(b^2 > 0\) với mọi \( b \ne 0\) nên \( |b^2|=b^2\).

d)Chúng tôi có:

$\dfrac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}=\dfrac{(\sqrt a)^2+\sqrt{a }.\sqrt b}{\sqrt{a}+\sqrt{b}}$

$=\dfrac{\sqrt a (\sqrt a+\sqrt b)}{\sqrt{a}+\sqrt{b}}=\sqrt a$.

Bởi vì nó hợp lý về mặt gốc của chủ đề, nên chúng ta có:

\(a > 0,\ b > 0 \rightarrow \sqrt{ab}=\sqrt a.\sqrt b\).

2. Giải bài 54 tr.30 SGK Toán 9 1

Xem Thêm : Chữ Ký Tên Hào, Hảo Đẹp ❤️️ Mẫu Chữ Kí Hào Phong Thủy

Rút gọn các biểu thức sau (giả sử tất cả các biểu thức bằng chữ đều có nghĩa):

Xem Thêm : Chữ Ký Tên Hào, Hảo Đẹp ❤️️ Mẫu Chữ Kí Hào Phong Thủy

Rút gọn các biểu thức sau (giả sử tất cả các biểu thức bằng chữ đều có nghĩa):

\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}};\,\,\, \dfrac{\sqrt{15}- \sqrt{5}}{1-\sqrt{3}};\,\,\,\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt {8}-2};\)

\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}};\,\,\, \dfrac{p-2\sqrt{ p}}{\sqrt{p}-2}.\)

Giải pháp:

+ Ta có:

$\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{(\sqrt 2)^2+ \sqrt 2}{1+ sqrt 2}$

$=\dfrac{\sqrt{2}(\sqrt{2}+1)}{1+\sqrt{2}}=\dfrac{\sqrt 2(1+ \ sqrt 2)}{\sqrt 2}=\sqrt{2}$.

+ Ta có:

\(\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\dfrac{\sqrt{3.5}-\sqrt{ 5.1}}{1-\sqrt{3}}\)

$=\dfrac{\sqrt{5}.\sqrt{3}-\sqrt{5}.1}{1-\sqrt{3}}=\dfrac{\sqrt {5}(\sqrt{3}-1)}{1-\sqrt{3}}$

$=\dfrac{-\sqrt{5}(1-\sqrt{3})}{1-\sqrt{3}}=-\sqrt{5}$.

+ Ta có:

\(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\dfrac{(\sqrt 2)^2. sqrt 3-\sqrt 6}{\sqrt{4.2}- 2}\)

\(=\dfrac{\sqrt 2.(\sqrt 2.\sqrt 3)-\sqrt 6}{2\sqrt 2 -2}\)\(= dfrac{2\sqrt{6}-\sqrt 6}{2(\sqrt{2}-1)}\)

\(=\dfrac{\sqrt{6}(\sqrt{2}-1)}{2(\sqrt{2}-1)}=\dfrac{\sqrt{ 6}}{2}\).

+ Ta có:

$\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{(\sqrt a)^2-\sqrt a .1}{1 -\sqrt a}$

$=\dfrac{\sqrt{a}(\sqrt{a}-1)}{1-\sqrt{a}}=\dfrac{-\sqrt{a}(1 -\sqrt{a})}{1-\sqrt{a}}=-\sqrt{a}$.

+ Ta có:

$\dfrac{p-2\sqrt{p}}{\sqrt{p}-2}=\dfrac{(\sqrt p)^2-2.\sqrt{p} }{\sqrt{p}-2}$

$=\dfrac{\sqrt{p}(\sqrt{p}-2)}{\sqrt{p}-2}=\sqrt{p}$.

3. Giải bài 55 trang 30 SGK Toán 9 Tập 1

Hệ số hóa (trong đó \(a,\ b,\ x,\ y\) không âm)

a) \(ab + b\sqrt a + \sqrt a + 1\)

b) \(\sqrt {{x^3}} – \sqrt {{y^3}} + \sqrt {{x^2}y} – \sqrt {x{y^ ) 2}} \)

Giải pháp:

a) Ta có:

\(ab+b\sqrt{a}+\sqrt{a}+1=(ab+b\sqrt{a})+(\sqrt{a}+1)\)

\(=(ba+b\sqrt{a})+(\sqrt{a}+1)\)

\(=\left[ {b.\left( {\sqrt a .\sqrt a } \right) + b\sqrt a} \right] + \left( { \sqrt a + 1} \phải)\)

\(=[(b\sqrt a).\sqrt a+ b\sqrt a.1]+(\sqrt a + 1)\)

\(=b\sqrt{a}(\sqrt{a}+1)+(\sqrt{a}+1)\)

\(=(\sqrt{a}+1)(b\sqrt{a}+1)\).

b) Ta có:

♦ Cách 1: Sử dụng hằng đẳng thức số \(7\):

\(\sqrt{x^{3}}-\sqrt{y^{3}}+\sqrt{x^{2}y}-\sqrt{xy^{2}} \)

\(=[(\sqrt x)^3-(\sqrt y)^3]+ (\sqrt{x.xy}-\sqrt{y.xy})\)

\(=(\sqrt x-\sqrt y).[(\sqrt x)^2 + \sqrt x.\sqrt y+(\sqrt y)^2]\)

\(+ (\sqrt{x}.\sqrt{xy}-\sqrt{y}.\sqrt{xy})\)

\(=(\sqrt x-\sqrt y).[(\sqrt x)^2 + \sqrt x.\sqrt y+(\sqrt y)^2]\)

\(+ \sqrt{xy}.(\sqrt{x}-\sqrt{y})\)

Xem Thêm : Kháng Tinh Bột Là Gì? Bạn Đã Hiểu Rõ Về Công Dụng Của Nó

\(=(\sqrt x-\sqrt y).[(\sqrt x)^2 + \sqrt x.\sqrt y+(\sqrt y)^2+\sqrt {xy}]\)

\(=(\sqrt x-\sqrt y).[(\sqrt x)^2 + \sqrt x.\sqrt y+(\sqrt y)^2+\sqrt {x}.\sqrt{y}]\)

\(=(\sqrt x-\sqrt y).[(\sqrt x)^2 + 2\sqrt x.\sqrt y+(\sqrt y)^2]\ )

\(=(\sqrt x-\sqrt y).(\sqrt x+\sqrt y)^2\).

♦ Cách 2: Nhóm các thuật ngữ:

\(\sqrt{x^{3}}-\sqrt{y^{3}}+\sqrt{x^{2}y}-\sqrt{xy^{2}} \)

\(=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)

\(=(x\sqrt{x}+x\sqrt{y})-(y\sqrt{x}+y\sqrt{y})\)

\(=x(\sqrt{x}+\sqrt{y})-y(\sqrt{y}+\sqrt{x})\)

\(=(\sqrt{x}+\sqrt{y})(x-y)\)

\(=(\sqrt{x}+\sqrt{y})(\sqrt x+\sqrt y)(\sqrt x -\sqrt y)\)

\(=(\sqrt{x}+\sqrt{y})^2(\sqrt{x}-\sqrt{y})\).

4. Giải bài 56 trang 30 SGK Toán 9 Tập 1

Thứ tự tăng dần:

a) 3$\sqrt{5}$; 2$\square{6}$; $\sqrt{29}$; 4$\square{2}$

b) 6$\sqrt{2}$; $\sqrt{38}$; 3$\square{7}$; 2$\square{14}$

Giải pháp:

a)Chúng tôi có:

\(\left\{ \ma trận{ 3\sqrt 5 = \sqrt {{3^2}.5} = \sqrt {9.5} = \sqrt {45} \ hfill \cr 2\sqrt 6 = \sqrt {{2^2}.6} = \sqrt {4.6} = \sqrt {24} \hfill \cr 4\sqrt 2 = \ sqrt {{4^2}.2} = \sqrt {16.2} = \sqrt {32} \hfill \cr} \right.\)

Bởi vì: \(24 < 29 < 32 < 45 \leftrightarrow \sqrt{24}<\sqrt{29}<\sqrt{32}<\sqrt{45 }\)

\(\leftrightarrow 2\sqrt{6}<\sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)

b) Ta có:

\(\left\{ \ma trận{ 6\sqrt 2 = \sqrt {{6^2}.2} = \sqrt {36.2} = \sqrt {72} \ hfill \cr 3\sqrt 7 = \sqrt {{3^2}.7} = \sqrt {9.7} = \sqrt {63} \hfill \cr 2\sqrt {14} = \sqrt {{2^2}.14} = \sqrt {4.14} = \sqrt {56} \hfill \cr} \right.\)

Bởi vì:\(38 < 56 < 63 < 72\leftrightarrow \sqrt{38}<\sqrt{56}<\sqrt{63}<\sqrt{72 }\)

5. Giải bài 57 trang 30 SGK Toán 9 Tập 1

\(\sqrt {25x} – \sqrt {16x} = 9\) khi \(x\) bằng

(a) \(1\); (b) \(3\); (c) \(9\); (d) \(81\).

Hãy chọn câu trả lời đúng.

Giải pháp:

Ta có:

\(\sqrt{25x}-\sqrt{16x}=9\)

\(\sqrt{5^2.x}-\sqrt{4^2.x}=9\)

\(\leftrightarrow 5\sqrt{x}-4\sqrt{x}=9\)

\(\leftrightarrow (5-4)\sqrt{x}=9\)

\(\leftrightarrow \sqrt{x}=9\)

\(\leftrightarrow (\sqrt{x})^2=9^2\)

\(\leftrightarrow x=81\)

Chọn câu trả lời d. \(81\)

Trước:

  • Giải bài 48 49 50 51 52 trang 29 30 SGK Toán 9 Tập 1
  • Tiếp theo:

    • Giải bài 58 59 60 61 Trang 32 33 SGK Toán 9 Tập 1
    • Xem thêm:

      • Câu hỏi khác 9
      • Học tốt vật lý lớp 9
      • Học tốt môn sinh học lớp 9
      • Học tốt ngữ văn lớp 9
      • Điểm tốt môn lịch sử lớp 9
      • Học tốt môn địa lý lớp 9
      • Học tốt tiếng Anh lớp 9
      • Tiếng Anh lớp 9 thí điểm
      • Học Khoa học Máy tính Lớp 9
      • Học tốt GDCD lớp 9
      • Chúc các em tham khảo và Giải bài tập SGK toán 9 bài 53 54 55 56 57 trang 30 sgk toán 9 tập 1 thành công!

        “Bài tập nào khó, đã có giabaisgk.com”

        Nguồn: https://dongnaiart.edu.vn
        Danh mục: Tin tức

        Lời kết: Trên đây là bài viết Luyện tập: Giải bài 53 54 55 56 57 trang 30 sgk Toán 9 tập 1. Hy vọng với bài viết này bạn có thể giúp ích cho bạn trong cuộc sống, hãy cùng đọc và theo dõi những bài viết hay của chúng tôi hàng ngày trên website: Dongnaiart.edu.vn

Related Posts

Hiểu về tiền thưởng và khuyến mãi tại các casino trực tuyến ở Việt Nam

Hiểu về tiền thưởng và khuyến mãi tại các casino trực tuyến ở Việt Nam

Ngành công nghiệp casino trực tuyến tại Việt Nam ngày càng phát triển mạnh mẽ, đi kèm với đó là hàng loạt chương trình tiền thưởng và…

Hướng Dẫn Nạp Tiền 789club tại pbglink.com

Hướng Dẫn Nạp Tiền 789club tại pbglink.com

Bạn đang tìm kiếm Hướng Dẫn Nạp Tiền 789Club một cách nhanh chóng và an toàn? Bài viết này sẽ giúp bạn thực hiện giao dịch nạp tiền vào…

Hướng dẫn cá cược thể thao cho người mới bắt đầu

Hướng dẫn cá cược thể thao cho người mới bắt đầu

Bạn muốn tìm hiểu mẹo cá cược thể thao tại Five88 chi tiết và lựa chọn nhà cái uy tín? Nhà cái Five88 là điểm đến lý…

Cách nạp tiền Rikvip nhanh chóng và an toàn nhất

Cách nạp tiền Rikvip nhanh chóng và an toàn nhất

Rikvip là một trong những nền tảng giải trí thu hút hàng triệu người chơi tuy nhiên, với những ai mới tham gia, việc thực hiện giao…

Cách chơi Poker tại Sky88 giúp bạn tăng tỷ lệ thắng

Cách chơi Poker tại Sky88 giúp bạn tăng tỷ lệ thắng

Poker là một trong những trò chơi bài hấp dẫn nhất thế giới, thu hút hàng triệu người tham gia nhờ vào sự kết hợp giữa kỹ…

Khám Phá Thế Giới Thể Thao Độc Đáo Cùng Thể Thao 789P – Tương Lai Của Giải Trí

Khám Phá Thế Giới Thể Thao Độc Đáo Cùng Thể Thao 789P – Tương Lai Của Giải Trí

Thể thao 789P là một nền tảng đang thu hút sự chú ý của đông đảo người yêu thể thao tại Việt Nam. Với nhiều dịch vụ…