Giải bài 51, 52, 53, 54 trang 24, 25 sgk toán 8 tập 1 – Giaibaitap.me

Cùng xem Giải bài 51, 52, 53, 54 trang 24, 25 sgk toán 8 tập 1 – Giaibaitap.me trên youtube.

Bài 51 trang 24 sgk toán 8 tập 1

Video Bài 51 trang 24 sgk toán 8 tập 1

Bài 51 Trang 24 SGK Toán 8 Tập 1

Nhân đa thức sau: a) \({x^3}-{\rm{ }}2{x^2} + {\rm{ }}x\);

b) \(2{x^2} + {\rm{ }}4x{\rm{ }} + {\rm{ }}2{\rm{ }}-{\ rm{ }}2{y^2}\);

c) \(2xy{\rm{ }}-{\rm{ }}{x^2}-{\rm{ }}{y^2} + {\rm{ }} 16\).

Giải pháp thay thế:

a) \({x^3}-{\rm{ }}2{x^2} + {\rm{ }}x{\rm{ }} = {\rm{ } }x({x^2}-{\rm{ }}2x{\rm{ }} + {\rm{ }}1){\rm{ }} = {\rm{ }}x {\left( {x{\rm{ }}-{\rm{ }}1} \right)^2}\)

b) \(2{x^2} + {\rm{ }}4x{\rm{ }} + {\rm{ }}2{\rm{ }}-{\ rm{ }}2{y^2} = {\rm{ }}2[({x^2} + {\rm{ }}2x{\rm{ }} + {\rm{ }} 1){\rm{ }}-{\rm{ }}{y^2}]\)

\(= {\rm{ }}2[{\left( {x{\rm{ }} + {\rm{ }}1} \right)^2}-{ rm{ }}{y^2}]\)

\( = {\rm{ }}2\left( {x{\rm{ }} + {\rm{ }}1{\rm{ }}-{\rm{ }}y} \right)\left( {x{\rm{ }} + {\rm{ }}1{\rm{ }} + {\rm{ }}y} \right )\)

c) \(2xy{\rm{ }}-{\rm{ }}{x^2}-{\rm{ }}{y^2} + {\rm{ }} 16{\rm{ }} = {\rm{ }}16{\rm{ }}-{\rm{ }}({x^2}-{\rm{ }}2xy{\ rm{ }}2xy{\rm{ }} rm{ }} + {\rm{ }}{y^2}){\rm{ }}\)

\(= {\rm{ }}{4^2}-{\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}y } \phải)^2}\)

\(= (4 – x + y)(4 + x – y)\)

bài 52 trang 24 SGK Toán 8 tập 1

Chứng minh rằng với mọi số nguyên \(n\) \((5n + 2)^2- 4\) chia hết cho \(5\).

Giải pháp thay thế:

Ta có: \({(5n + 2)^2} – 4 = {(5n + 2)^2} – {2^2}\)

\(= (5n + 2 – 2)(5n + 2 + 2)\)

\(= 5n(5n + 4)\)

Vì tích \(5n(5n + 4)\) chứa \(5\) và \(n\in \mathbb z\),

Do đó \(5n(5n + 4)\) \(\vdots\) \(5\) \(∀n ∈ \mathbb z\).

Xem Thêm : “Con Báo” trong Tiếng Anh là gì: Định Nghĩa, Ví Dụ Anh Việt

bài 53 trang 24 SGK Toán 8 tập 1

Phân tích đa thức sau:

a) \(x^2- 3x + 2\);

(Gợi ý: Ta sẽ không áp dụng ngay những điều vừa học để phân tích mà nếu tách các số hạng \(-3x = – x – 2x\) ra ta có \(x^2- 3x + 2 = x^2- x – 2x + 2\) Từ đó dễ dàng phân tích sâu hơn.

Cũng có thể tách \(2 = – 4 + 6\) thì ta có \(x^2- 3x + 2 = x^2- 4 – 3x + 6\), từ dễ dàng phân tích thêm)

b) \(x^2+ x – 6\);

c) \(x^2+ 5x + 6\).

Giải pháp thay thế:

a) \(x^2- 3x + 2 = x^2- x – 2x + 2 = x(x – 1) – 2(x – 1) \)

\(= (x – 1)(x – 2)\)

hoặc

\(x^2- 3x + 2 = x^2- 3x – 4 + 6\)

\(= x^2- 4 – 3x + 6\)

\(= (x – 2)(x + 2) – 3(x -2)\)

\( = (x – 2)(x + 2 – 3) = (x – 2)(x – 1)\)

b) \(x^2+ x – 6\)

Tách \(x=3x-2x\) ta được:

\(x^2+ x – 6 = x^2+ 3x – 2x – 6\)

\(= x(x + 3) – 2(x + 3)\)

\(= (x + 3)(x – 2)\).

c) \(x^2+ 5x + 6\)

Xem Thêm : Soạn bài Nhớ rừng | Soạn văn 8 hay nhất – VietJack.com

Tách \(5x=2x+3x\) ta được:

\(x^2+ 5x + 6 = x^2+ 2x + 3x + 6\)

\(= x(x + 2) + 3(x + 2)\)

\(= (x + 2)(x + 3)\)

Bài 54 Trang 25 SGK Toán 8 Tập 1

Phân tích đa thức sau:

a) \({x^3} + {\rm{ }}2{x^2}y{\rm{ }} + {\rm{ }}x{y^2}- {\rm{ }}9x\);

b) \(2x{\rm{ }}-{\rm{ }}2y{\rm{ }}-{\rm{ }}{x^2} + {\rm { }}2xy{\rm{ }}-{\rm{ }}{y^2}\);

c) \({x^4}-{\rm{ }}2{x^2}\).

Giải pháp thay thế:

a) \({x^3} + {\rm{ }}2{x^2}y{\rm{ }} + {\rm{ }}x{y^2}- {\rm{ }}9x{\rm{ }} = {\rm{ }}x({x^2}{\rm{ }} + 2xy{\rm{ }} + {\ rm{ }}{y^2}-{\rm{ }}9)\)

\(= {\rm{ }}x[({x^2} + {\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2 }){\rm{ }}-{\rm{ }}9]\)

\(= {\rm{ }}x[{\left( {x{\rm{ }} + {\rm{ }}y} \right)^2}-{ rm{ }}{3^2}]\)

\(= {\rm{ }}x\left( {x{\rm{ }} + {\rm{ }}y{\rm{ }}-{\rm{ ) }}3} \right)\left( {x{\rm{ }} + {\rm{ }}y{\rm{ }} + {\rm{ }}3} \ Phải)\)

b) \(2x{\rm{ }}-{\rm{ }}2y{\rm{ }}-{\rm{ }}{x^2} + {\rm { }}2xy{\rm{ }}-{\rm{ }}{y^2} = {\rm{ }}\left( {2x{\rm{ }}-{\rm { }}2y} \right){\rm{ }}-{\rm{ }}({x^2}-{\rm{ }}2xy{\rm{ }} + {\ rm{ }}{y^2})\)

\(= {\rm{ }}2\left( {x{\rm{ }}-{\rm{ }}y} \right){\rm{ }}- {\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}y} \right)^2}\)

\( = {\rm{ }}\left( {x{\rm{ }}-{\rm{ }}y} \right)\left[ {2{\ rm{ }}-{\rm{ }}\left( {x{\rm{ }}-{\rm{ }}y} \right)} \right]\)

\(= (x – y)(2 – x + y)\)

c) \({x^4}-{\rm{ }}2{x^2} = {\rm{ }}{x^2}\left( {{x^2} – 2} \right){\rm{ = }}{{\rm{x}}^2}\left( {{x^2} – {{\left( {\sqrt 2 } \right)}^2}} \right) \)

\(={x^2}\left( {x{\rm{ }} – {\rm{ }}\sqrt 2 } \right)\left( {x{ ) rm{ }} + {\rm{ }}\sqrt 2 } \right)\).

giaibaitap.me

Nguồn: https://dongnaiart.edu.vn
Danh mục: Tin tức

Lời kết: Trên đây là bài viết Giải bài 51, 52, 53, 54 trang 24, 25 sgk toán 8 tập 1 – Giaibaitap.me. Hy vọng với bài viết này bạn có thể giúp ích cho bạn trong cuộc sống, hãy cùng đọc và theo dõi những bài viết hay của chúng tôi hàng ngày trên website: Dongnaiart.edu.vn

Related Posts

Xổ Số W88: Mô Hình Cược Mới Mẻ và Lợi Nhuận Khủng

Xổ Số W88: Mô Hình Cược Mới Mẻ và Lợi Nhuận Khủng

Xổ số W88 đã khiến cả cộng đồng game thủ và những người đam mê cá cược chao đảo với mô hình cược cực kỳ đa dạng và…

Xổ số Thừa Thiên Huế: Lựa chọn hàng đầu của lô thủ!

Xổ số Thừa Thiên Huế: Lựa chọn hàng đầu của lô thủ!

Có thể bạn quan tâm Bảng công thức lượng giác đầy đủ,chi tiết,dễ hiểu Trang trí bảng khai giảng – Tìm đáp án, giải bài tập, để…

Điều khác biệt của chương trình đào tạo quốc tế cấp trung học sở 

Điều khác biệt của chương trình đào tạo quốc tế cấp trung học sở 

Chương trình đào tạo quốc tế chắc hẳn không còn là điều gì đó quá xa lạ với mọi người. Song vẫn còn rất nhiều bậc phụ…

Kèo châu Á là gì? Kinh nghiệm cá cược kèo châu Á bất bại 2024

Kèo châu Á là gì? Kinh nghiệm cá cược kèo châu Á bất bại 2024

Kèo châu Á là gì? Kèo châu Á là một loại kèo cá cược phổ biến trong bóng đá và nhiều môn thể thao khác tại thabet. Đây…

Lý do bạn nên tải app Sin88 về điện thoại tham gia cá cược

Lý do bạn nên tải app Sin88 về điện thoại tham gia cá cược

Bạn muốn tìm kiếm một sân chơi cá cược uy tín, chất lượng và mang đến những trải nghiệm tuyệt vời? Sin88 – ứng dụng cá cược…

Bắn cá đổi thưởng là gì? Kinh nghiệm chơi bắn cá đổi thưởng luôn thắng

Bắn cá đổi thưởng là gì? Kinh nghiệm chơi bắn cá đổi thưởng luôn thắng

Bắn cá đổi thưởng là gì? Bắn cá U888 đổi thưởng là một loại hình giải trí trực tuyến phổ biến trong ngành game online. Dưới đây là…