Bài 11, 12, 13, 14, 15, 16 trang 11, 12 SGK Toán 9 tập 1 – Luyện tập

Cùng xem Bài 11, 12, 13, 14, 15, 16 trang 11, 12 SGK Toán 9 tập 1 – Luyện tập trên youtube.

Bài 11 sgk toán 9 tập 1 trang 11

Video Bài 11 sgk toán 9 tập 1 trang 11

Giải bài 11, 12, 13, 14, 15 Trang 11, Bài 16 Trang 12 SGK Toán 9 Tập 1 Bài toán luyện tập. Bài 16 Đố vui. Phát hiện lỗi sai trong bằng chứng “con muỗi nặng bằng con voi” dưới đây.

bài 11 trang 11 sgk toán 9 tập 1

Câu hỏi:

Đếm:

Đếm:

a) \(\sqrt{16}.\sqrt{25} + \sqrt{196}:\sqrt{49}\);

b) \(36:\sqrt{2.3^2.18}-\sqrt{169}\);

c) \(\sqrt{\sqrt{81}}\);

d) \( \sqrt{3^{2}+4^{2}}\).

Giải pháp:

a) Ta có: \(\sqrt{16}.\sqrt{25} + \sqrt{196}:\sqrt{ 49}\)

\(=\sqrt{4^2}.\sqrt{5^2}+\sqrt{14^2}:\sqrt{7^2}\)

\(=\left| 4 \right| . \left| 5 \right| + \left| {14} \right| : \left| 7 \right|\ )

\(=4.5+14:7\)

\(=20+2=22\).

b) Ta có:

\(36:\sqrt{2.3^2.18}-\sqrt{169}\)

\(= 36: \sqrt{(2.3^2).18}-\sqrt{13^2} \)

\(=36:\sqrt{(2.9).18} – \left| 13 \right| \)

\(=36:\sqrt{18.18}-13\)

\(=36:\sqrt{18^2}-13 \)

\(=36: \left|18 \right| -13\)

\(=36:18-13\)

\(=2-13=-11\).

c) Ta có: \(\sqrt{81}=\sqrt{9^2}=\left| 9 \right| = 9\).

\( \rightarrow \sqrt{\sqrt{81}}\)\(=\sqrt{9}= \sqrt{3^2}=\left| 3 \ Đúng | =3\).

d) Ta có: \(\sqrt{3^{2}+4^{2}}=\sqrt{16+9} =\sqrt{25}\)\(=\sqrt{5^2}=\left|5 \right| =5\).

bài giảng 12 trang 11 sgk toán 9 tập 1

Câu hỏi:

Tìm x sao cho mỗi nghiệm sau đại diện cho:

a)\(\sqrt{2x + 7}\); c) \(\displaystyle \sqrt {{1 \over { – 1 + x}}} \)

b) \( \sqrt{-3x + 4}\) d) \( \sqrt{1 + x^{2}}\)

Giải pháp:

a) Ta có:

\(\sqrt{2x + 7}\) có nghĩa khi và chỉ khi: \(2x + 7\geq 0 \)

\( \leftrightarrow 2x \geq -7\)

\(\displaystyle \leftrightarrow x \geq {{ – 7} \trên 2}\).

b) Chúng tôi có

\(\sqrt{-3x + 4}\) có nghĩa khi và chỉ khi: \(-3x + 4\geq 0\)

\(\leftrightarrow -3x\geq -4\)

\(\displaystyle \leftrightarrow x\leq {-4 \over {-3}}\)

\(\displaystyle \leftrightarrow x\leq {4 \over { 3}}\)

c) Ta có:

\(\sqrt{\dfrac{1}{-1 + x}}\) có nghĩa khi và chỉ khi:

\(\displaystyle {1 \over \displaystyle { – 1 + x}} \ge 0 \leftrightarrow – 1 + x > 0\)

\( \leftrightarrow x > 1\)

d) \(\sqrt{1 + x^{2}}\)

Ta có: \(x^2\geq 0\), với mọi số thực \(x\)

\(\leftrightarrow x^2+1 \geq 0+ 1\), (Thêm \(1\) vào cả hai vế của bất đẳng thức trên)

\(\leftrightarrow x^2+1 \geq 1\), trong đó \(1 >0\)

\(\leftrightarrow x^2+1 >0\)

Vậy các căn trên luôn có nghĩa với mọi số thực \(x\).

Bài 13 Trang 11 SGK Toán 9 Tập 1

Câu hỏi:

Xem Thêm : Điều khiến Lưu Bị chưa sánh được Tào Tháo: Thua kém ngay ở

Rút gọn các biểu thức sau:

a) \(2\sqrt {{a^2}} – 5a\) và \(a < 0\).

b) \( \sqrt{25a^{2}}+ 3a\) và \(a ≥ 0\).

c) \(\sqrt {9{a^4}} + 3{a^2}\),

d) \( 5\sqrt{4a^{6}}\) – \( 3a^{3}\) và \(a < 0\)

Phương pháp:

+) bằng hằng số phương trình \(\sqrt{a^2}=\left| a \right|\).

+) được xác định bằng giá trị tuyệt đối của số \(a\): nếu \(a \ge 0\) thì \( \left| a \right| =a ). Nếu \( a< 0\) thì \( \left| a \right| = -a\).

Giải pháp:

a) Ta có: \(2\sqrt{a^2}-5a=2|a|-5a\)

\(=2.(-a)-5a\) (vì \(a<0\) nên \( \left| a \right| =-a \))

\(=-2a-5a\)

\(=(-2-5)a\)

\(=-7a\)

Vậy \(2 \sqrt{a^2}-5a=-7a\).

b) Ta có: \(\sqrt{25a^{2}} + 3a= \sqrt{5^2.a^2}+3a\)

\(=\sqrt{(5a)^2}+3a\)

\(=\left| 5 a\right| +3a\)

\(=5a+3a\)

\(=(5+3)a\)

\(=8a\).

(bởi vì \(a\geq 0\rightarrow |5a|=5a\) )

c) Ta có: \(\sqrt{9a^{4}}+3a^2= \sqrt{3^2.(a^2)^2}+ 3a^2\)

\(=\sqrt{(3a^2)^2}+3a^2\)

\(=\left| 3 a^2\right| +3a^2\)

\(=3a^2 + 3a^2\)

\(=(3+3)a^2\)

\(=6a^2\).

(vì \(a^2\geq 0\) cho mọi \( a\,\,\in\,\,\mathbb{r}\rightarrow |3a ^2|=3a^2\)).

d) Ta có:

\(5\sqrt{4a^{6}} – 3a^3=5\sqrt{2^2.(a^3)^2} -3a^3\)

\(=5.\sqrt{(2a^3)^2}-3a^3\)

\(=5.\left| 2a^3 \right| -3a^3\)

\(=5.2.(-a^3)-3a^3\) (vì \(a<0\) nên \(|2a^3|=-2a^3\) )

\(=10.(-a^3) – 3a^3\)

\(=-10a^3-3a^3\)

\(=(-10-3)a^3\)

\(=-13a^3\).

Bài 14 Trang 11 SGK Toán 9 Tập 1

Câu hỏi:

Phân hủy:

a) \( x^{2}- 3\). b) \( x^{2}- 6\);

c) \( x^{2}\) + \( 2\sqrt{3}x + 3\); d) \( x^{2}\) – \ ( 2\sqrt{5}x + 5\).

Phương pháp:

+) với \(a \ge 0\) ta luôn có: \(a={\left( {\sqrt a } \right)^2}\)

+) Sử dụng hằng đẳng thức:

1) \({\left({a + b} \right)^2} = {a^2} + 2ab + {b^2}\)

2) \({\left( {a – b} \right)^2} = {a^2} – 2ab + {b^2}\)

3) \({a^2} – {b^2} = \left({a – b} \right).\left({a + b} \right)\)

Giải pháp:

a) Ta có:

\(x^{2} – 3=x^2-(\sqrt{3})^2\)

\(=(x-\sqrt{3})(x+\sqrt{3})\) (áp dụng hằng đẳng thức 3)

b) Ta có:

Xem Thêm : Những bài thơ về hoa sen hay nhất

\(x^{2}- 6=x^2-(\sqrt{6})^2\)

\(=(x-\sqrt{6})(x+\sqrt{6})\) (áp dụng hằng đẳng thức 3)

c) Ta có:

\(x^2+2\sqrt{3}x + 3=x^2+2.x.\sqrt{3}+(\sqrt{3})^2\)

\(=(x+\sqrt{3})^2\) (áp dụng hằng đẳng thức 1)

d) Ta có:

\(x^2-2\sqrt{5}x+5=x^2-2.x.\sqrt{5}+(\sqrt{5})^2\)

\(=(x-\sqrt{5})^2\) (áp dụng hằng phương trình #2).

Bài 15 Trang 11 SGK Toán 9 Tập 1

Câu hỏi:

Giải phương trình sau:

a) \({x^2} – 5 = 0\); b) \({x^2} – 2\sqrt {11} x + 11 = 0\)

Phương pháp:

+) với \(a \ge 0\) ta luôn có: \(a={\left( {\sqrt a } \right)^2}\).

+) nếu \(a.b=0\) thì \(a=0\) hoặc \(b=0\).

+) Sử dụng hằng đẳng thức:

\({\left( {a – b} \right)^2} = {a^2} – 2ab + {b^2}\)

\({a^2} – {b^2} = \left( {a – b} \right).\left( {a + b} \right)\)

Giải pháp:

a) Ta có:

\({x^2} – 5 = 0 \leftrightarrow {x^2} = 5 \leftrightarrow x = \pm \sqrt 5 \)

Vậy \( s = \left\{ { – \sqrt 5 ;\sqrt 5 } \right\} \).

Hoặc:

Ta có: \({x^2} – 5 = 0\)

\(\leftrightarrow {x^2} – {\left( {\sqrt 5 } \right)^2} = 0\)

\(\leftrightarrow \left( {x + \sqrt 5 } \right).\left( {x – \sqrt 5 } \right) = 0\)

\( \leftrightarrow \left[ \matrix{x + \sqrt 5 = 0 \hfill \crx – \sqrt 5 = 0 \hfill \cr} \right. )

\( \leftrightarrow \left[ \matrix{x = – \sqrt 5 \hfill \crx = \sqrt 5 \hfill \cr} \right.\)

b) Ta có:

\({x^2} – 2\sqrt {11} x + 11 = 0 \)\( \leftrightarrow {x^2} – 2.x.\sqrt {11} + {\left( {\sqrt {11} } \right)^2} = 0 \)\( \leftrightarrow {\left( {x – \sqrt {11} } } \right) ^2} = 0 \)\(\leftrightarrow x – \sqrt {11} =0\)

\(\leftrightarrow x = \sqrt {11} \)

Vậy \(s = \left\{ {\sqrt {11} } \right\} \)

bài 16 trang 12 sgk toán 9 tập 1

Câu hỏi:

Đố vui. Phát hiện lỗi sai trong bằng chứng “con muỗi nặng bằng con voi” dưới đây.

Giả sử một con muỗi nặng \(m\) (gam) và một con voi nặng \(v\) (gam). tôi có

\({m^2} + {v^2} = {v^2} + {m^2}\)

Cộng cả hai vào \(-2mv\), ta có

\({m^2} – 2mv + {v^2} = {v^2} – 2mv + {m^2},\)

Hoặc \({\left( {m – v} \right)^2} = {\left( {v – m} \right)^2}\)

Lấy căn bậc hai mỗi vế của bất đẳng thức trên, ta được:

\(\sqrt {{{\left( {m – v} \right)}^2}} = \sqrt {{{\left( {v – m} \right) }^2}} \) (1)

Vậy \(m – v = v – m\) (2)

Từ đó ta có \(2m = 2v\), suy ra \(m = v\). Vì vậy, một con muỗi nặng bằng một con voi (!).

Giải pháp:

Áp dụng hằng đẳng thức \( \sqrt{a^2}=\left| a \right|\) ta được:

\(\left\{ \ma trận{\sqrt {{{\left({m – v} \right)}^2}} = \left| {m – v} \right| \hfill \cr\sqrt {{{\left( {v – m} \right)}^2}} = \left| {v – m} \right| \ hfill \cr} \right.\)

Do đó: \(\sqrt {{{\left( {m – v} \right)}^2}} = \sqrt {{{\left( {v – m} ) right)}^2}} \)

\(\leftrightarrow \left| m-v\right|=\left|v-m\right|.\)

Như vậy câu hỏi trên sai từ dòng (1) đến dòng (2), do phần khai báo root không có ký hiệu tuyệt đối.

Vì vậy, không thể nào một con muỗi nặng bằng một con voi được.

sachbaitap.com

Bài viết tiếp theo

Nguồn: https://dongnaiart.edu.vn
Danh mục: Tin tức

Lời kết: Trên đây là bài viết Bài 11, 12, 13, 14, 15, 16 trang 11, 12 SGK Toán 9 tập 1 – Luyện tập. Hy vọng với bài viết này bạn có thể giúp ích cho bạn trong cuộc sống, hãy cùng đọc và theo dõi những bài viết hay của chúng tôi hàng ngày trên website: Dongnaiart.edu.vn

Related Posts

Khám Phá Thế Giới Thể Thao Độc Đáo Cùng Thể Thao 789P – Tương Lai Của Giải Trí

Khám Phá Thế Giới Thể Thao Độc Đáo Cùng Thể Thao 789P – Tương Lai Của Giải Trí

Thể thao 789P là một nền tảng đang thu hút sự chú ý của đông đảo người yêu thể thao tại Việt Nam. Với nhiều dịch vụ…

Trải Nghiệm Đỉnh Cao Với Đánh Bài Online – Khám Phá Thế Giới Game Thú Vị

Trải Nghiệm Đỉnh Cao Với Đánh Bài Online – Khám Phá Thế Giới Game Thú Vị

Có thể bạn quan tâm Nên hay không nên kiêng xây nhà khi có tang? local brand nước ngoài soạn bài bánh chưng bánh giầy lớp 6…

Kèo châu Á – Tìm Hiểu Chi Tiết Về Một Hình Thức Cá Cược Phổ Biến

Kèo châu Á – Tìm Hiểu Chi Tiết Về Một Hình Thức Cá Cược Phổ Biến

Kèo châu Á là một trong những hình thức cá cược phổ biến nhất hiện nay, đặc biệt là trong lĩnh vực thể thao. Bài viết này Bet88 sẽ…

Nổ hũ hấp dẫn người chơi – Thế giới sắc màu của cơ hội và chiến thắng

Nổ hũ hấp dẫn người chơi – Thế giới sắc màu của cơ hội và chiến thắng

Nổ hũ hấp dẫn người chơi không chỉ là một trò chơi may rủi mà còn là một nghệ thuật. Với những âm thanh vui nhộn, hình…

Thế Giới Bắn Cá New88 – Trải Nghiệm Độc Đáo Từ Game Đến Thực Tế

Thế Giới Bắn Cá New88 – Trải Nghiệm Độc Đáo Từ Game Đến Thực Tế

Có thể bạn quan tâm Cheat Engine Web server là gì? Hiểu rõ về web server – TopDev BIB là gì? Tác dụng của BIB trong các…

Bắn Cá Phần Thưởng Cao – Trải Nghiệm Giải Trí Đỉnh Cao Cho Game Thủ

Bắn Cá Phần Thưởng Cao – Trải Nghiệm Giải Trí Đỉnh Cao Cho Game Thủ

Bắn cá phần thưởng cao đang trở thành một trò chơi phổ biến thu hút hàng triệu người chơi. Trò chơi không chỉ mang lại giây phút…