Giải bài 38, 39, 40 trang 12 Sách bài tập Toán 8 tập 2 – Giaibaitap.me

Cùng xem Giải bài 38, 39, 40 trang 12 Sách bài tập Toán 8 tập 2 – Giaibaitap.me trên youtube.

Câu 38 trang 12 sách bài tập (sbt) toán 8 tập 2

Xem Thêm : Bài 4: Sử dụng và bảo quản trang phục – Hoc24

Giải phương trình sau:

A. \({{1 – x} \trên {x + 1}} + 3 = {{2x + 3} \trên {x + 1}}\)

\({{{{\left({x + 2} \right)}^2}} \trên {2x – 3}} – 1 = {{{x^2} + 10} \trên {2x – 3}}\)

\({{5x – 2} \trên {2 – 2x}} + {{2x – 1} \trên 2} = 1 – {{{x^2} + x – 3} \ Nhiều hơn {1 – x}}\)

\({{5 – 2x} \ trên 3} + {{\left( {x – 1} \right)\left( {x + 1} \right)} \over {3x – 1}} = {{\left( {x + 2} \right)\left( {1 – 3x} \right)} \hơn {9x – 3}}\)

Người chiến thắng:

A. \({{1 – x} \ qua {x + 1}} + 3 = {{2x + 3} \ qua {x + 1}}\) tkxĐ: \(x \ne – 1 \)

\(\eqalign{ & \leftrightarrow {{1 – x} \over {x + 1}} + {{3\left( {x + 1} \right)} \ tại {x + 1}} = {{2x + 3} \ tại {x + 1}} \cr & \leftrightarrow 1 – x + 3\left({x + 1} \right) = 2x + 3 \cr & \leftrightarrow 1 – x + 3x + 3 – 2x – 3 = 0 \cr & \leftrightarrow 0x = – 1 \cr} \)

Phương trình không có nghiệm.

\({{{{\left({x + 2} \right)}^2}} \trên {2x – 3}} – 1 = {{{x^2} + 10} \trên {2x – 3}}\)

dkxĐ: \(x \ne {3 \trên 2}\)

\(\eqalign{ & \leftrightarrow {{{{\left( {x + 2} \right)}^2}} \trên {2x – 3}} – {{2x – 3} \over {2x – 3}} = {{{x^2} + 10} \over {2x – 3}} \cr & \leftrightarrow {\left( {x + 2} \right)^2} – \left( {2x – 3} \right) = {x^2} + 10 \cr & \leftrightarrow {x^2} + 4x + 4 – 2x + 3 – {x^2} – 10 = 0 \cr & \leftrightarrow 2x = 3 \cr} \)

\( \leftrightarrow x = {3 \trên 2}\) (loại)

Phương trình không có nghiệm.

\({{5x – 2} \trên {2 – 2x}} + {{2x – 1} \trên 2} = 1 – {{{x^2} + x – 3} \ Nhiều hơn {1 – x}}\)

dkxĐ: \(x \ne 1\)

\(\eqalign{ & \leftrightarrow {{5x – 2} \over {2\left( {1 – x} \right)}} + {{\left( {2x ) – 1} \right)\left( {1 – x} \right)} \over {2\left( {1 – x} \right)}} = {{2\left( { 1 – x} \right)} \over {2\left( {1 – x} \right)}} – {{2\left( {{x^2} + x – 3} right)} \over {2\left( {1 – x} \right)}} \cr & \leftrightarrow 5x – 2 + \left( {2x – 1} \right) left( {1 – x} \right) = 2\left( {1 – x} \right) – 2\left( {{x^2} + x – 3} \right) \ cr & \leftrightarrow 5x – 2 + 2x – 2{x^2} – 1 + x – 2 + 2x + 2{x^2} + 2x – 6 = 0 \cr & \leftrightarrow 5x + 2x + x + 2x + 2x = 2 + 6 + 2 + 1 \leftrightarrow 12x = 11 \cr} \)

\( \leftrightarrow x = {{11} \trên {12}}\) (thỏa mãn)

Vậy phương trình có nghiệm \(x = {{11} \over {12}}\)

\({{5 – 2x} \trên 3} + {{\left( {x – 1} \right)\left( {x + 1} \right)} \trên {3x – 1}} = {{\left( {x + 2} \right)\left( {1 – 3x} \right)} \hơn {9x – 3}}\) x ne { 1 \hơn 3}\)

\(\eqalign{ & \leftrightarrow {{\left( {5 – 2x} \right)\left( {3x – 1} \right)} \ qua {3 left( {3x – 1} \right)}} + {{3\left( {x + 1} \right)\left( {x – 1} \right)} \over {3 \left( {3x – 1} \right)}} = {{\left( {x + 2} \right)\left( {1 – 3x} \right)} \over {3 \left( {3x – 1} \right)}} \cr & \leftrightarrow \left( {5 – 2x} \right)\left( {3x – 1} \right) 3 \left( {x + 1} \right)\left( {x – 1} \right) = \left( {x + 2} \right)\left( {1 – 3x} right) \cr & \leftrightarrow 15x – 5 – 6{x^2} + 2x + 3{x^2} – 3 = x – 3{x^2} + 2 – 6x \cr & \leftrightarrow – 6{x^2} + 3{x^2} + 3{x^2} + 15x + 2x – x + 6x = 2 + 5 + 3 \cr & \leftrightarrow 22x = 10 cr} \)

Xem Thêm : thu thuat ghost hdd khong can dia cd

\( \leftrightarrow x = {5 \over {11}}\) (thoả mãn)

Vậy phương trình có nghiệm \(x = {5 \trên {11}}\)

câu 39 trang 12 sách bài tập (sbt) toán 8 tập 2

A. Tìm x sao cho biểu thức \({{2{x^2} – 3x – 2} \over {{x^2} – 4}}\) có giá trị bằng 2 p>

b. Tìm x sao cho giá trị của hai biểu thức

\({{6x – 1} \ trên {3x + 2}}\) và \({{2x + 5} \ trên {x – 3}}\) là bình đẳng với nhau.

c.Tìm y sao cho giá trị của hai biểu thức

\({{y + 5} \ trên {y – 1}} – {{y + 1} \ trên {y – 3}}\) và \({{ – 8} ) over {\left( {y – 1} \right)\left( {y – 3} \right)}}\) bằng

Người chiến thắng:

A. Ta có: \({{2{x^2} – 3x – 2} \over {{x^2} – 4}}\) = 2 dkxĐ: \(x \ne \pm 2 \)

\(\eqalign{ & \leftrightarrow 2{x^2} – 3x – 2 = 2\left( {{x^2} – 4} \right) \cr & leftrightarrow 2{x^2} – 3x – 2 = 2{x^2} – 8 \cr & \leftrightarrow 2{x^2} – 2{x^2} – 3x = – 8 + 2 cr} \)

\( \leftrightarrow – 3x = – 6\)

\( \leftrightarrow x = 2\) (loại)

Vậy không có giá trị x thỏa mãn điều kiện bài toán.

Ta có: \({{6x – 1} \trên {3x + 2}}\)= \({{2x + 5} \trên {x – 3}}\) ( x \ ne – {2 \ trên 3}\)và \(x \ne 3\)

\(\eqalign{ & \leftrightarrow {{\left( {6x – 1} \right)\left( {x – 3} \right)} \ qua {\ Trái({3x + 2}\right)\Left({x – 3}\right)}} = {{\left({2x + 5}\right)\left({3x + 2 } \right)} \over {\left( {3x + 2} \right)\left( {x – 3} \right)}} \cr & \leftrightarrow \left( {6x – 1} \right)\left({x – 3} \right) = \left({2x + 5} \right)\left({3x + 2} \right) cr & \leftrightarrow 6{x^2} – 18x – x + 3 = 6{x^2} + 4x + 15x + 10 \cr & \leftrightarrow 6{x^2} – 6{x ^2} – 18x – x – 4x – 15x = 10 – 3 \cr & \leftrightarrow – 38x = 7 \cr} \)

\( \leftrightarrow x = – {7 \over {38}}\) (thoả mãn)

Vậy khi \(x = – {7 \trên {38}}\) thì giá trị của hai biểu thức \({{6x – 1} \trên {3x + 2}}\ ) và \({{2x + 5} \trên {x – 3}}\)

Ta có: \({{y + 5} \trên {y – 1}} – {{y + 1} \trên {y – 3}}\)= \({{ – 8} over {\left( {y – 1} \right)\left( {y – 3} \right)}}\) tkxĐ: \(y \ne 1\) và \ (y \ne 3\)

\(\eqalign{ & \leftrightarrow {{\left( {y + 5} \right)\left( {y – 3} \right)} \over {\ left({y – 1}\right)\left({y – 3}\right)}} – {{\left({y+1}\right)\left({y – 1 } } \right)} \over {\left( {y – 1} \right)\left( {y – 3} \right)}} = {{ – 8} \over { left( {y – 1} \right)\left( {y – 3} \right)}} \cr & \leftrightarrow \left( {y + 5} \right)\ trái ( {y – 3} \right) – \left( {y + 1} \right)\left( {y – 1} \right) = – 8 \cr & \leftrightarrow { y^2} – 3y + 5y – 15 – {y^2} + 1 = – 8 \cr & \leftrightarrow 2y = 6 \cr} \)

\( \leftrightarrow y = 3\) (loại)

Vậy không có giá trị y nào thỏa mãn điều kiện bài toán.

câu 40 trang 12 sách bài tập (sbt) toán 8 tập 2

Xem Thêm : Bài 4: Sử dụng và bảo quản trang phục – Hoc24

Giải phương trình sau:

A. \({{1 – 6x} \over {x – 2}} + {{9x + 4} \over {x + 2}} = {{x\left( {3x – 2} \right ) + 1} \ vượt quá {{x^2} – 4}}\)

\(1 + {x \over {3 – x}} = {{5x} \over {\left( {x + 2} \right)\left( {3 – x} \right )}} + {2 \hơn {x + 2}}\)

\({2 \over {x – 1}} + {{2x + 3} \over {{x^2} + x + 1}} = {{\left( {2x – 1 } \right)\left( {2x + 1} \right)} \over {{x^3} – 1}}\)

\({{{x^3} – {{\left( {x – 1} \right)}^3}} \ trên {\left( {4x + 3} \right )\ left( {x – 5} \ right)}} = {{7x – 1} \ over {4x + 3}} – {x \ over {x – 5}}\)

Người chiến thắng:

A. \({{1 – 6x} \over {x – 2}} + {{9x + 4} \over {x + 2}} = {{x\left( {3x – 2} \right ) + 1} \ qua {{x^2} – 4}}\) tkxĐ: \(x \ne \pm 2\)

\(\eqalign{ & \leftrightarrow {{\left( {1 – 6x} \right)\left( {x + 2} \right)} \over {{x ^2} – 4}} + {{\left( {9x + 4} \right)\left( {x – 2} \right)} \over {{x^2} – 4}} = {{x\left( {3x – 2} \right) + 1} \over {{x^2} – 4}} \cr & \leftrightarrow \left( {1 – 6x} \right)\left( {x + 2} \right) + \left( {9x + 4} \right)\left( {x – 2} \right) = x\left( {3x – 2} \right) + 1 \cr & \leftrightarrow x + 2 – 6{x^2} – 12x + 9{x^2} – 18x + 4x – 8 = 3{x^2 } – 2x + 1 \cr & \leftrightarrow – 6{x^2} + 9{x^2} – 3{x^2} + x – 12x – 18x + 4x + 2x = 1 – 2 + 8 \cr & \leftrightarrow – 23x = 7 \cr} \)

\( \leftrightarrow x = – {7 \over {23}}\) (thoả mãn)

Vậy phương trình có nghiệm \(x = – {7 \trên {23}}\)

\(1 + {x \over {3 – x}} = {{5x} \over {\left( {x + 2} \right)\left( {3 – x} \right )}} + {2 \over {x + 2}}\) tkxĐ: \(x \ne 3\)and \(x = – 2\)

\(\eqalign{ & \leftrightarrow {{\left( {x + 2} \right)\left( {3 – x} \right)} \ qua {\ Trái({x + 2} \right)\left({3 – x} \right)}} + {{x\left({x + 2} \right)} \ qua {\ Left({x + 2} \right)\left({3 – x} \right)}} = {{5x} \over {\left({x + 2} \right)\ Trái( {3 – x} \right)}} + {{2\left( {3 – x} \right)} \ qua {\left( {x + 2} \right)\ left( {3 – x} \right)}} \cr & \leftrightarrow \left( {x + 2} \right)\left( {3 – x} \right) + x left({x + 2} \right) = 5x + 2\left({3 – x} \right) \cr & \leftrightarrow 3x – {x^2} + 6 – 2x + { x^2} + 2x = 5x + 6 – 2x \cr & \leftrightarrow {x^2} – {x^2} + 3x – 2x + 2x – 5x + 2x = 6 – 6 \cr & \leftrightarrow 0x = 0 \cr} \)

Phương trình đã cho có nghiệm thực với mọi giá trị của x thỏa mãn điều kiện xác định.

Vậy phương trình có nghiệm \(x \in r/x \ne 3\) và \(x \ne – 2\)

\({2 \over {x – 1}} + {{2x + 3} \over {{x^2} + x + 1}} = {{\left( {2x – 1 } \ phải)\trái( {2x + 1} \phải)} \ qua {{x^3} – 1}}\) tkxĐ: \(x \ne 1\)

\(\eqalign{ & \leftrightarrow {{2\left( {{x^2} + x + 1} \right)} \over {{x^3} – 1} } + {{\left( {2x + 3} \right)\left( {x – 1} \right)} \over {{x^3} – 1}} = {{\left ( {2x – 1} \right)\left( {2x + 1} \right)} \over {{x^3} – 1}} \cr & \leftrightarrow 2\left( {{x^2} + x + 1} \right) + \left( {2x + 3} \right)\left( {x – 1} \right) = \left( {2x – 1} \right)\left( {2x + 1} \right) \cr & \leftrightarrow 2{x^2} + 2x + 2 + 2{x^2} – 2x + 3x – 3 = 4{x^2} – 1 \cr & \leftrightarrow 2{x^2} + 2{x^2} – 4{x^2} + 2x – 2x + 3x = – 1 – 2 + 3 \cr & \leftrightarrow 3x = 0 \cr} \)

(Hài lòng)

Vậy phương trình có nghiệm x = 0

\({{{x^3} – {{\left( {x – 1} \right)}^3}} \ trên {\left( {4x + 3} \right )\ left( {x – 5} \ right)}} = {{7x – 1} \ over {4x + 3}} – {x \ over {x – 5}}\) \ne – {3 \ trên 4}\) và \(x \ne 5\)

\(\eqalign{ & \leftrightarrow {{{x^3} – {{\left( {x – 1} \right)}^3}} \over {\left ( {4x + 3} \right)\left( {x – 5} \right)}} = {{\left( {7x – 1} \right)\left( {x – 5} \right)} \over {\left( {4x + 3} \right)\left( {x – 5} \right)}} – {{x\left( {4x + 3} \right)} \over {\left( {4x + 3} \right)\left( {x – 5} \right)}} \cr & \leftrightarrow {x^3} – {\left( {x – 1} \right)^3} = \left( {7x – 1} \right)\left( {x – 5} \right) – x\left ( {4x + 3} \right) \cr & \leftrightarrow {x^3} – {x^3} – 3{x^2} – 3x + 1 = 7{x^2} – 35x – x + 5 – 4{x^2} – 3x \cr & \leftrightarrow 3{x^2} – 7{x^2} + 4{x^2} – 3x + 35x + x + 3x = 5 – 1 \cr & \leftrightarrow 36x = 4 \cr} \)

\( \leftrightarrow x = {1 \trên 9}\) (thỏa mãn)

Vậy phương trình có nghiệm \(x = {1 \trên 9}\)

giaibaitap.me

Nguồn: https://dongnaiart.edu.vn
Danh mục: Tin tức

Lời kết: Trên đây là bài viết Giải bài 38, 39, 40 trang 12 Sách bài tập Toán 8 tập 2 – Giaibaitap.me. Hy vọng với bài viết này bạn có thể giúp ích cho bạn trong cuộc sống, hãy cùng đọc và theo dõi những bài viết hay của chúng tôi hàng ngày trên website: Dongnaiart.edu.vn

Related Posts

Hiểu về tiền thưởng và khuyến mãi tại các casino trực tuyến ở Việt Nam

Hiểu về tiền thưởng và khuyến mãi tại các casino trực tuyến ở Việt Nam

Ngành công nghiệp casino trực tuyến tại Việt Nam ngày càng phát triển mạnh mẽ, đi kèm với đó là hàng loạt chương trình tiền thưởng và…

Hướng Dẫn Nạp Tiền 789club tại pbglink.com

Hướng Dẫn Nạp Tiền 789club tại pbglink.com

Bạn đang tìm kiếm Hướng Dẫn Nạp Tiền 789Club một cách nhanh chóng và an toàn? Bài viết này sẽ giúp bạn thực hiện giao dịch nạp tiền vào…

Hướng dẫn cá cược thể thao cho người mới bắt đầu

Hướng dẫn cá cược thể thao cho người mới bắt đầu

Bạn muốn tìm hiểu mẹo cá cược thể thao tại Five88 chi tiết và lựa chọn nhà cái uy tín? Nhà cái Five88 là điểm đến lý…

Cách nạp tiền Rikvip nhanh chóng và an toàn nhất

Cách nạp tiền Rikvip nhanh chóng và an toàn nhất

Rikvip là một trong những nền tảng giải trí thu hút hàng triệu người chơi tuy nhiên, với những ai mới tham gia, việc thực hiện giao…

Cách chơi Poker tại Sky88 giúp bạn tăng tỷ lệ thắng

Cách chơi Poker tại Sky88 giúp bạn tăng tỷ lệ thắng

Poker là một trong những trò chơi bài hấp dẫn nhất thế giới, thu hút hàng triệu người tham gia nhờ vào sự kết hợp giữa kỹ…

Khám Phá Thế Giới Thể Thao Độc Đáo Cùng Thể Thao 789P – Tương Lai Của Giải Trí

Khám Phá Thế Giới Thể Thao Độc Đáo Cùng Thể Thao 789P – Tương Lai Của Giải Trí

Thể thao 789P là một nền tảng đang thu hút sự chú ý của đông đảo người yêu thể thao tại Việt Nam. Với nhiều dịch vụ…