Giải bài 38, 39, 40 trang 12 Sách bài tập Toán 8 tập 2 – Giaibaitap.me

Cùng xem Giải bài 38, 39, 40 trang 12 Sách bài tập Toán 8 tập 2 – Giaibaitap.me trên youtube.

Bài 38 sbt toán 8 tập 2

Câu 38 trang 12 sách bài tập (sbt) toán 8 tập 2

Xem Thêm : Hình nền 3D cực đẹp

Giải phương trình sau:

A. \({{1 – x} \trên {x + 1}} + 3 = {{2x + 3} \trên {x + 1}}\)

\({{{{\left({x + 2} \right)}^2}} \trên {2x – 3}} – 1 = {{{x^2} + 10} \trên {2x – 3}}\)

\({{5x – 2} \trên {2 – 2x}} + {{2x – 1} \trên 2} = 1 – {{{x^2} + x – 3} \ Nhiều hơn {1 – x}}\)

\({{5 – 2x} \ trên 3} + {{\left( {x – 1} \right)\left( {x + 1} \right)} \over {3x – 1}} = {{\left( {x + 2} \right)\left( {1 – 3x} \right)} \hơn {9x – 3}}\)

Người chiến thắng:

A. \({{1 – x} \ qua {x + 1}} + 3 = {{2x + 3} \ qua {x + 1}}\) tkxĐ: \(x \ne – 1 \)

\(\eqalign{ & \leftrightarrow {{1 – x} \over {x + 1}} + {{3\left( {x + 1} \right)} \ tại {x + 1}} = {{2x + 3} \ tại {x + 1}} \cr & \leftrightarrow 1 – x + 3\left({x + 1} \right) = 2x + 3 \cr & \leftrightarrow 1 – x + 3x + 3 – 2x – 3 = 0 \cr & \leftrightarrow 0x = – 1 \cr} \)

Phương trình không có nghiệm.

\({{{{\left({x + 2} \right)}^2}} \trên {2x – 3}} – 1 = {{{x^2} + 10} \trên {2x – 3}}\)

dkxĐ: \(x \ne {3 \trên 2}\)

\(\eqalign{ & \leftrightarrow {{{{\left( {x + 2} \right)}^2}} \trên {2x – 3}} – {{2x – 3} \over {2x – 3}} = {{{x^2} + 10} \over {2x – 3}} \cr & \leftrightarrow {\left( {x + 2} \right)^2} – \left( {2x – 3} \right) = {x^2} + 10 \cr & \leftrightarrow {x^2} + 4x + 4 – 2x + 3 – {x^2} – 10 = 0 \cr & \leftrightarrow 2x = 3 \cr} \)

\( \leftrightarrow x = {3 \trên 2}\) (loại)

Phương trình không có nghiệm.

\({{5x – 2} \trên {2 – 2x}} + {{2x – 1} \trên 2} = 1 – {{{x^2} + x – 3} \ Nhiều hơn {1 – x}}\)

dkxĐ: \(x \ne 1\)

\(\eqalign{ & \leftrightarrow {{5x – 2} \over {2\left( {1 – x} \right)}} + {{\left( {2x ) – 1} \right)\left( {1 – x} \right)} \over {2\left( {1 – x} \right)}} = {{2\left( { 1 – x} \right)} \over {2\left( {1 – x} \right)}} – {{2\left( {{x^2} + x – 3} right)} \over {2\left( {1 – x} \right)}} \cr & \leftrightarrow 5x – 2 + \left( {2x – 1} \right) left( {1 – x} \right) = 2\left( {1 – x} \right) – 2\left( {{x^2} + x – 3} \right) \ cr & \leftrightarrow 5x – 2 + 2x – 2{x^2} – 1 + x – 2 + 2x + 2{x^2} + 2x – 6 = 0 \cr & \leftrightarrow 5x + 2x + x + 2x + 2x = 2 + 6 + 2 + 1 \leftrightarrow 12x = 11 \cr} \)

\( \leftrightarrow x = {{11} \trên {12}}\) (thỏa mãn)

Vậy phương trình có nghiệm \(x = {{11} \over {12}}\)

\({{5 – 2x} \trên 3} + {{\left( {x – 1} \right)\left( {x + 1} \right)} \trên {3x – 1}} = {{\left( {x + 2} \right)\left( {1 – 3x} \right)} \hơn {9x – 3}}\) x ne { 1 \hơn 3}\)

\(\eqalign{ & \leftrightarrow {{\left( {5 – 2x} \right)\left( {3x – 1} \right)} \ qua {3 left( {3x – 1} \right)}} + {{3\left( {x + 1} \right)\left( {x – 1} \right)} \over {3 \left( {3x – 1} \right)}} = {{\left( {x + 2} \right)\left( {1 – 3x} \right)} \over {3 \left( {3x – 1} \right)}} \cr & \leftrightarrow \left( {5 – 2x} \right)\left( {3x – 1} \right) 3 \left( {x + 1} \right)\left( {x – 1} \right) = \left( {x + 2} \right)\left( {1 – 3x} right) \cr & \leftrightarrow 15x – 5 – 6{x^2} + 2x + 3{x^2} – 3 = x – 3{x^2} + 2 – 6x \cr & \leftrightarrow – 6{x^2} + 3{x^2} + 3{x^2} + 15x + 2x – x + 6x = 2 + 5 + 3 \cr & \leftrightarrow 22x = 10 cr} \)

Xem Thêm : thay đổi phím tắt trong win 10

\( \leftrightarrow x = {5 \over {11}}\) (thoả mãn)

Vậy phương trình có nghiệm \(x = {5 \trên {11}}\)

câu 39 trang 12 sách bài tập (sbt) toán 8 tập 2

A. Tìm x sao cho biểu thức \({{2{x^2} – 3x – 2} \over {{x^2} – 4}}\) có giá trị bằng 2 p>

b. Tìm x sao cho giá trị của hai biểu thức

\({{6x – 1} \ trên {3x + 2}}\) và \({{2x + 5} \ trên {x – 3}}\) là bình đẳng với nhau.

c.Tìm y sao cho giá trị của hai biểu thức

\({{y + 5} \ trên {y – 1}} – {{y + 1} \ trên {y – 3}}\) và \({{ – 8} ) over {\left( {y – 1} \right)\left( {y – 3} \right)}}\) bằng

Người chiến thắng:

A. Ta có: \({{2{x^2} – 3x – 2} \over {{x^2} – 4}}\) = 2 dkxĐ: \(x \ne \pm 2 \)

\(\eqalign{ & \leftrightarrow 2{x^2} – 3x – 2 = 2\left( {{x^2} – 4} \right) \cr & leftrightarrow 2{x^2} – 3x – 2 = 2{x^2} – 8 \cr & \leftrightarrow 2{x^2} – 2{x^2} – 3x = – 8 + 2 cr} \)

\( \leftrightarrow – 3x = – 6\)

\( \leftrightarrow x = 2\) (loại)

Vậy không có giá trị x thỏa mãn điều kiện bài toán.

Ta có: \({{6x – 1} \trên {3x + 2}}\)= \({{2x + 5} \trên {x – 3}}\) ( x \ ne – {2 \ trên 3}\)và \(x \ne 3\)

\(\eqalign{ & \leftrightarrow {{\left( {6x – 1} \right)\left( {x – 3} \right)} \ qua {\ Trái({3x + 2}\right)\Left({x – 3}\right)}} = {{\left({2x + 5}\right)\left({3x + 2 } \right)} \over {\left( {3x + 2} \right)\left( {x – 3} \right)}} \cr & \leftrightarrow \left( {6x – 1} \right)\left({x – 3} \right) = \left({2x + 5} \right)\left({3x + 2} \right) cr & \leftrightarrow 6{x^2} – 18x – x + 3 = 6{x^2} + 4x + 15x + 10 \cr & \leftrightarrow 6{x^2} – 6{x ^2} – 18x – x – 4x – 15x = 10 – 3 \cr & \leftrightarrow – 38x = 7 \cr} \)

\( \leftrightarrow x = – {7 \over {38}}\) (thoả mãn)

Vậy khi \(x = – {7 \trên {38}}\) thì giá trị của hai biểu thức \({{6x – 1} \trên {3x + 2}}\ ) và \({{2x + 5} \trên {x – 3}}\)

Ta có: \({{y + 5} \trên {y – 1}} – {{y + 1} \trên {y – 3}}\)= \({{ – 8} over {\left( {y – 1} \right)\left( {y – 3} \right)}}\) tkxĐ: \(y \ne 1\) và \ (y \ne 3\)

\(\eqalign{ & \leftrightarrow {{\left( {y + 5} \right)\left( {y – 3} \right)} \over {\ left({y – 1}\right)\left({y – 3}\right)}} – {{\left({y+1}\right)\left({y – 1 } } \right)} \over {\left( {y – 1} \right)\left( {y – 3} \right)}} = {{ – 8} \over { left( {y – 1} \right)\left( {y – 3} \right)}} \cr & \leftrightarrow \left( {y + 5} \right)\ trái ( {y – 3} \right) – \left( {y + 1} \right)\left( {y – 1} \right) = – 8 \cr & \leftrightarrow { y^2} – 3y + 5y – 15 – {y^2} + 1 = – 8 \cr & \leftrightarrow 2y = 6 \cr} \)

\( \leftrightarrow y = 3\) (loại)

Vậy không có giá trị y nào thỏa mãn điều kiện bài toán.

câu 40 trang 12 sách bài tập (sbt) toán 8 tập 2

Xem Thêm : Hình nền 3D cực đẹp

Giải phương trình sau:

A. \({{1 – 6x} \over {x – 2}} + {{9x + 4} \over {x + 2}} = {{x\left( {3x – 2} \right ) + 1} \ vượt quá {{x^2} – 4}}\)

\(1 + {x \over {3 – x}} = {{5x} \over {\left( {x + 2} \right)\left( {3 – x} \right )}} + {2 \hơn {x + 2}}\)

\({2 \over {x – 1}} + {{2x + 3} \over {{x^2} + x + 1}} = {{\left( {2x – 1 } \right)\left( {2x + 1} \right)} \over {{x^3} – 1}}\)

\({{{x^3} – {{\left( {x – 1} \right)}^3}} \ trên {\left( {4x + 3} \right )\ left( {x – 5} \ right)}} = {{7x – 1} \ over {4x + 3}} – {x \ over {x – 5}}\)

Người chiến thắng:

A. \({{1 – 6x} \over {x – 2}} + {{9x + 4} \over {x + 2}} = {{x\left( {3x – 2} \right ) + 1} \ qua {{x^2} – 4}}\) tkxĐ: \(x \ne \pm 2\)

\(\eqalign{ & \leftrightarrow {{\left( {1 – 6x} \right)\left( {x + 2} \right)} \over {{x ^2} – 4}} + {{\left( {9x + 4} \right)\left( {x – 2} \right)} \over {{x^2} – 4}} = {{x\left( {3x – 2} \right) + 1} \over {{x^2} – 4}} \cr & \leftrightarrow \left( {1 – 6x} \right)\left( {x + 2} \right) + \left( {9x + 4} \right)\left( {x – 2} \right) = x\left( {3x – 2} \right) + 1 \cr & \leftrightarrow x + 2 – 6{x^2} – 12x + 9{x^2} – 18x + 4x – 8 = 3{x^2 } – 2x + 1 \cr & \leftrightarrow – 6{x^2} + 9{x^2} – 3{x^2} + x – 12x – 18x + 4x + 2x = 1 – 2 + 8 \cr & \leftrightarrow – 23x = 7 \cr} \)

\( \leftrightarrow x = – {7 \over {23}}\) (thoả mãn)

Vậy phương trình có nghiệm \(x = – {7 \trên {23}}\)

\(1 + {x \over {3 – x}} = {{5x} \over {\left( {x + 2} \right)\left( {3 – x} \right )}} + {2 \over {x + 2}}\) tkxĐ: \(x \ne 3\)and \(x = – 2\)

\(\eqalign{ & \leftrightarrow {{\left( {x + 2} \right)\left( {3 – x} \right)} \ qua {\ Trái({x + 2} \right)\left({3 – x} \right)}} + {{x\left({x + 2} \right)} \ qua {\ Left({x + 2} \right)\left({3 – x} \right)}} = {{5x} \over {\left({x + 2} \right)\ Trái( {3 – x} \right)}} + {{2\left( {3 – x} \right)} \ qua {\left( {x + 2} \right)\ left( {3 – x} \right)}} \cr & \leftrightarrow \left( {x + 2} \right)\left( {3 – x} \right) + x left({x + 2} \right) = 5x + 2\left({3 – x} \right) \cr & \leftrightarrow 3x – {x^2} + 6 – 2x + { x^2} + 2x = 5x + 6 – 2x \cr & \leftrightarrow {x^2} – {x^2} + 3x – 2x + 2x – 5x + 2x = 6 – 6 \cr & \leftrightarrow 0x = 0 \cr} \)

Phương trình đã cho có nghiệm thực với mọi giá trị của x thỏa mãn điều kiện xác định.

Vậy phương trình có nghiệm \(x \in r/x \ne 3\) và \(x \ne – 2\)

\({2 \over {x – 1}} + {{2x + 3} \over {{x^2} + x + 1}} = {{\left( {2x – 1 } \ phải)\trái( {2x + 1} \phải)} \ qua {{x^3} – 1}}\) tkxĐ: \(x \ne 1\)

\(\eqalign{ & \leftrightarrow {{2\left( {{x^2} + x + 1} \right)} \over {{x^3} – 1} } + {{\left( {2x + 3} \right)\left( {x – 1} \right)} \over {{x^3} – 1}} = {{\left ( {2x – 1} \right)\left( {2x + 1} \right)} \over {{x^3} – 1}} \cr & \leftrightarrow 2\left( {{x^2} + x + 1} \right) + \left( {2x + 3} \right)\left( {x – 1} \right) = \left( {2x – 1} \right)\left( {2x + 1} \right) \cr & \leftrightarrow 2{x^2} + 2x + 2 + 2{x^2} – 2x + 3x – 3 = 4{x^2} – 1 \cr & \leftrightarrow 2{x^2} + 2{x^2} – 4{x^2} + 2x – 2x + 3x = – 1 – 2 + 3 \cr & \leftrightarrow 3x = 0 \cr} \)

(Hài lòng)

Vậy phương trình có nghiệm x = 0

\({{{x^3} – {{\left( {x – 1} \right)}^3}} \ trên {\left( {4x + 3} \right )\ left( {x – 5} \ right)}} = {{7x – 1} \ over {4x + 3}} – {x \ over {x – 5}}\) \ne – {3 \ trên 4}\) và \(x \ne 5\)

\(\eqalign{ & \leftrightarrow {{{x^3} – {{\left( {x – 1} \right)}^3}} \over {\left ( {4x + 3} \right)\left( {x – 5} \right)}} = {{\left( {7x – 1} \right)\left( {x – 5} \right)} \over {\left( {4x + 3} \right)\left( {x – 5} \right)}} – {{x\left( {4x + 3} \right)} \over {\left( {4x + 3} \right)\left( {x – 5} \right)}} \cr & \leftrightarrow {x^3} – {\left( {x – 1} \right)^3} = \left( {7x – 1} \right)\left( {x – 5} \right) – x\left ( {4x + 3} \right) \cr & \leftrightarrow {x^3} – {x^3} – 3{x^2} – 3x + 1 = 7{x^2} – 35x – x + 5 – 4{x^2} – 3x \cr & \leftrightarrow 3{x^2} – 7{x^2} + 4{x^2} – 3x + 35x + x + 3x = 5 – 1 \cr & \leftrightarrow 36x = 4 \cr} \)

\( \leftrightarrow x = {1 \trên 9}\) (thỏa mãn)

Vậy phương trình có nghiệm \(x = {1 \trên 9}\)

giaibaitap.me

Nguồn: https://dongnaiart.edu.vn
Danh mục: Tin tức

Lời kết: Trên đây là bài viết Giải bài 38, 39, 40 trang 12 Sách bài tập Toán 8 tập 2 – Giaibaitap.me. Hy vọng với bài viết này bạn có thể giúp ích cho bạn trong cuộc sống, hãy cùng đọc và theo dõi những bài viết hay của chúng tôi hàng ngày trên website: Dongnaiart.edu.vn

Related Posts

Khám Phá Thế Giới Thể Thao Độc Đáo Cùng Thể Thao 789P – Tương Lai Của Giải Trí

Khám Phá Thế Giới Thể Thao Độc Đáo Cùng Thể Thao 789P – Tương Lai Của Giải Trí

Thể thao 789P là một nền tảng đang thu hút sự chú ý của đông đảo người yêu thể thao tại Việt Nam. Với nhiều dịch vụ…

Trải Nghiệm Đỉnh Cao Với Đánh Bài Online – Khám Phá Thế Giới Game Thú Vị

Trải Nghiệm Đỉnh Cao Với Đánh Bài Online – Khám Phá Thế Giới Game Thú Vị

Có thể bạn quan tâm Khi mệt mỏi đến mức muốn gục ngã, hãy đọc những điều này để lấy lại niềm tin vào cuộc sống Hàng…

Kèo châu Á – Tìm Hiểu Chi Tiết Về Một Hình Thức Cá Cược Phổ Biến

Kèo châu Á – Tìm Hiểu Chi Tiết Về Một Hình Thức Cá Cược Phổ Biến

Kèo châu Á là một trong những hình thức cá cược phổ biến nhất hiện nay, đặc biệt là trong lĩnh vực thể thao. Bài viết này Bet88 sẽ…

Nổ hũ hấp dẫn người chơi – Thế giới sắc màu của cơ hội và chiến thắng

Nổ hũ hấp dẫn người chơi – Thế giới sắc màu của cơ hội và chiến thắng

Nổ hũ hấp dẫn người chơi không chỉ là một trò chơi may rủi mà còn là một nghệ thuật. Với những âm thanh vui nhộn, hình…

Thế Giới Bắn Cá New88 – Trải Nghiệm Độc Đáo Từ Game Đến Thực Tế

Thế Giới Bắn Cá New88 – Trải Nghiệm Độc Đáo Từ Game Đến Thực Tế

Có thể bạn quan tâm Modal Verb Là Gì? Và Cách Sử Dụng Modal Verb Trong Tiếng Anh Bạn đã biết đổi 1 peso philippines bằng bao…

Bắn Cá Phần Thưởng Cao – Trải Nghiệm Giải Trí Đỉnh Cao Cho Game Thủ

Bắn Cá Phần Thưởng Cao – Trải Nghiệm Giải Trí Đỉnh Cao Cho Game Thủ

Bắn cá phần thưởng cao đang trở thành một trò chơi phổ biến thu hút hàng triệu người chơi. Trò chơi không chỉ mang lại giây phút…